Y Production in Ultra-Peripheral Heavy Ion Collisions

Spencer Klein and Joakim Nystrand†

Exclusive Υ production, $A+A\to A+A+\Upsilon$ in ultraperipheral heavy ion collisions is sensitive to shadowing in the nuclear targets. Υ production occurs when a photon from the electromagnetic field of one nucleus fluctuates to a $b\overline{b}$ dipole, which then interacts with the other nucleus and emerges as an Υ .

We calculate the cross section for $\Upsilon(1S)$ production in silicon-silicon collisions at a center of mass energy of 250 GeV per nucleon, as can be produced at RHIC, and for lead-lead collisions at a center of mass energy of 5.5 TeV/nucleon, as will occur at the LHC. The calculation uses $\gamma p \to l^+ l^- p$ data from HERA; the lepton pairs are an unknwon mixture of $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$; theoretical considerations indicate the mixture is largely $\Upsilon(1S)$. The cross section is[1]

$$\sigma = \int dk \frac{dN_{\gamma}}{dk} \sigma_{\Upsilon}(k)$$

where dN/dk is the photon flux, obtained using the Weizsacker-Williams method. The upsilon cross section $\sigma_{\Upsilon}(k)$ is taken from HERA data[2]: $\sigma(\gamma p \to \Upsilon p) = 0.06W^{1.7} \mathrm{pb}$, where W is the γp center of mass energy. The $b\bar{b}$ system is small, so the cross section for coherent photoproduction on a nuclear target scales as A^2 .

The HERA measurements didn't differentiate between different Υ states, so our results also do not. The photon energy k is related to the Υ rapidity via $y = 1/2\ln(2k/M_\Upsilon)$ where M_Υ is the Υ mass.

Figure 1a shows $d\sigma/dy$ for Si-Si collisions at RHIC. Silicon is is smaller than gold, with a higher photon energy cutoff, and can be collided at a higher per-nucleon energy and luminosity. At the design luminosity of 4.4×10^{28} cm⁻² s⁻¹, the production rate for |y| < 1 is 220 in 10^7 sec. After the branching ratio (5% total to $e^+e^- + \mu^+\mu^-$), this is barely detectable. However, the proposed RHIC II upgrade would increase the luminosity by a factor of 40; this would lead to an observable signal.

Figure 1b shows $d\sigma/dy$ for Pb-Pb collisions at the LHC. At the LHC Pb-Pb design luminosity of 10^{26} cm⁻² s⁻¹, the production rate for |y| < 1 is 1 in 2 minutes. With a large acceptance detector, a good measurement is obtainable even in a 1 month run.

These calculations do not include shadowing. At midrapidity, the production is sensitive to gluons with x = 0.04 at RHIC, and x = 0.0017 at the LHC. Gluon shadowing could significantly reduce the cross section[3].

FIG. 1: $d\sigma/dy$ for (a) $Si + Si \rightarrow Si + Si + \Upsilon$ at RHIC and (b) $Pb + Pb \rightarrow Pb + Pb + \Upsilon$ at the LHC. The solid curves are for $\sigma \approx W^{1.7}$, while the dashed curves assume $W^{0.8}$ scaling, as is observed for J/ψ photoproduction. The shaded bands show the uncertainties in the HERA measurement.

REFERENCES

- † Dept. of Physics, Lund University, Lund, Sweden
- [1] S. Klein and J. Nystrand, Phys. Rev. C60, 014903 (1999).
- [2] J. Breitweg et al., Phys. Lett. **B437**, 432 (1998).
- [3] L. Frankfurt, M. Strikman and M. Zhalov, Phys. Lett. **B540**, 220 (2002).